Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Comput Biol Med ; 171: 108164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412690

RESUMEN

Inflammation plays a pivotal role in various pathological processes, ranging from routine injuries and infections to cancer. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are two major enzymes involved in the formation of lipid mediators of inflammation, such as prostaglandins and leukotrienes, through the arachidonic acid pathway. Despite the frequent use of nonsteroidal anti-inflammatory drugs for managing inflammatory disorders by inhibiting these enzymes, there is a wide spectrum of adverse effects linked to their usage. Jeevaneeya Rasayana (JR), a polyherbal formulation traditionally used in India, is renowned for its anti-inflammatory properties. The present study aimed to identify the potential phytocompounds in JR plants against COX-2 and 5-LOX, utilizing molecular docking and dynamic simulations. Among the 429 identified phytocompounds retrieved from publicly available data sources, Terrestribisamide and 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine have shown potential binding affinity and favorable interactions with COX-2 and 5-LOX arachidonic acid binding sites. The physicochemical properties and ADMET profiles of these compounds determined their drug-likeness and pharmacokinetics features. Additional validation using molecular dynamics simulations, SASA, Rg, and MM-PBSA binding energy calculations affirmed the stability of the complex formed between those compounds with target proteins. Together, the study identified the effectual binding potential of those bioactive compounds against COX-2 and 5-LOX, providing a viable approach for the development of effective anti-inflammatory medications.


Asunto(s)
Antiinflamatorios , Inflamación , Extractos Vegetales , Humanos , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/uso terapéutico , Simulación del Acoplamiento Molecular , Ácido Araquidónico/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/uso terapéutico
2.
Cell Rep ; 43(2): 113700, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38265935

RESUMEN

Elevated interleukin (IL)-1ß levels, NLRP3 inflammasome activity, and systemic inflammation are hallmarks of chronic metabolic inflammatory syndromes, but the mechanistic basis for this is unclear. Here, we show that levels of plasma IL-1ß are lower in fasting compared to fed subjects, while the lipid arachidonic acid (AA) is elevated. Lipid profiling of NLRP3-stimulated mouse macrophages shows enhanced AA production and an NLRP3-dependent eicosanoid signature. Inhibition of cyclooxygenase by nonsteroidal anti-inflammatory drugs decreases eicosanoid, but not AA, production. It also reduces both IL-1ß and IL-18 production in response to NLRP3 activation. AA inhibits NLRP3 inflammasome activity in human and mouse macrophages. Mechanistically, AA inhibits phospholipase C activity to reduce JNK1 stimulation and hence NLRP3 activity. These data show that AA is an important physiological regulator of the NLRP3 inflammasome and explains why fasting reduces systemic inflammation and also suggests a mechanism to explain how nonsteroidal anti-inflammatory drugs work.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Araquidónico/uso terapéutico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Eicosanoides , Ayuno
3.
Cancer Sci ; 115(1): 197-210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882467

RESUMEN

Genetic mutations in the isocitrate dehydrogenase (IDH) gene that result in a pathological enzymatic activity to produce oncometabolite have been detected in acute myeloid leukemia (AML) patients. While specific inhibitors that target mutant IDH enzymes and normalize intracellular oncometabolite level have been developed, refractoriness and resistance has been reported. Since acquisition of pathological enzymatic activity is accompanied by the abrogation of the crucial WT IDH enzymatic activity in IDH mutant cells, aberrant metabolism in IDH mutant cells can potentially persist even after the normalization of intracellular oncometabolite level. Comparisons of isogenic AML cell lines with and without IDH2 gene mutations revealed two mutually exclusive signalings for growth advantage of IDH2 mutant cells, STAT phosphorylation associated with intracellular oncometabolite level and phospholipid metabolic adaptation. The latter came to light after the oncometabolite normalization and increased the resistance of IDH2 mutant cells to arachidonic acid-mediated apoptosis. The release of this metabolic adaptation by FDA-approved anti-inflammatory drugs targeting the metabolism of arachidonic acid could sensitize IDH2 mutant cells to apoptosis, resulting in their eradication in vitro and in vivo. Our findings will contribute to the development of alternative therapeutic options for IDH2 mutant AML patients who do not tolerate currently available therapies.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Ácido Araquidónico/uso terapéutico , Mutación , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Isocitrato Deshidrogenasa/metabolismo
4.
Vestn Otorinolaringol ; 88(6): 73-80, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38153897

RESUMEN

Polypous rhinosinusitis (PRS) is a chronic inflammatory disease of the mucous membrane of the nasal cavity and paranasal sinuses, characterized by the formation and recurrent growth of polyps. Often, PRS is a manifestation of the most severe clinical symptom complex - the asthmatic triad (AT). AT is characterized by three main clinical manifestations: bronchial asthma (BA) itself, PRS, intolerance to acetylsalicylic acid, other nonsteroidal anti-inflammatory drugs (NSAIDs) and NA. However, not all three components of the triad are expressed equally, a variant of the dyad (BA with PRS) is possible. AT is one of the most severe variants of BA, it is more difficult to respond to conservative therapy and significantly reduces the ability of patients to work. In the world, PRS and AT are detected in 0.5-16% of the population, in Russia the number of patients is about 1.5 million people. MATERIAL AND METHODS: The analysis of the medical literature on this problem has been carried out. RESULTS: To date, there is no consensus on the etiology and pathogenesis of the polypous process in the nasal cavity and paranasal sinuses, therefore, many theories of the occurrence of this disease have been proposed, the main ones being: anatomical factors, osteitis, virological, bacterial, allergic, autoimmune theory and the theory of metabolic disorders of arachidonic acid. The key role in modern studies of the pathogenesis of AT is still given to the peculiarities of arachidonic acid metabolism. CONCLUSIONS: The low effectiveness of treatment and the severity of clinical manifestations encourage scientists to further investigate the etiopathogenesis of polypous rhinosinusitis and the asthmatic triad.


Asunto(s)
Asma , Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Sinusitis/complicaciones , Sinusitis/diagnóstico , Pólipos Nasales/complicaciones , Pólipos Nasales/diagnóstico , Ácido Araquidónico/uso terapéutico , Asma/complicaciones , Asma/diagnóstico , Enfermedad Crónica , Rinitis/complicaciones , Rinitis/diagnóstico
5.
Curr Drug Metab ; 24(10): 709-722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936469

RESUMEN

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/uso terapéutico , PPAR gamma/farmacología , PPAR gamma/uso terapéutico , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Biotina/metabolismo , Biotina/farmacología , Biotina/uso terapéutico , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/uso terapéutico , Antiinflamatorios/uso terapéutico , Riboflavina/metabolismo , Riboflavina/farmacología , Riboflavina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
6.
Curr Pharm Des ; 29(17): 1379-1389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37171005

RESUMEN

BACKGROUND AND OBJECTIVE: Rheumatoid arthritis (RA) is an increasingly serious disease worldwide that can damage the joints and bones of sufferers. Sanmiao Pill (SMP), a classical traditional Chinese medicine (TCM) prescription, has been used for effective treatments for RA in the clinic. To comprehensively illuminate the therapeutic mechanism of SMP in the treatment of RA, the effects of SMP on biomarkers and metabolic pathways in rats with adjuvant-induced arthritis (AIA) were examined. > Methods: Sprague Dawley rats were randomly divided into two control (CC, Control) groups, two model (MM, Model) groups, a methotrexate group (MTX, 7.6 mg/kg body weight per week), and two SMP groups (San-L, 28.7 mg/kg body weight per day and San-H, 57.4 mg/kg body weight per day). Rats' body weight, paw swelling, arthritis scores, biochemical parameters, histopathology, and so on were used to evaluate the success of the model and the therapeutic effects of SMP. The metabolic techniques were used to characterize the metabolic profile and biomarkers of the serum and urine samples of rats to reveal the metabolic changes that occurred after SMP treatment. > Results: After 21 days of treatment, SMP improved weight gain, reduced the severity of paw swelling, lowered the levels of biochemical indicators (CCP-Ab, IL-6, TNF-α, RF), decreased destruction of articular cartilage and bone erosion, and protected the affected joints.Additionally, 17 and 19 potential biomarkers associated with RA were identified in the serum and urine, respectively. SMP significantly reversed 14 potential biomarkers, such as arachidonic acid, lysoPC(20:4(5Z,8Z,11Z,14Z)), L-tryptophan, 9-cis-Retinoic acid, hippuric acid, pyridoxine, and pantothenic acid. These metabolites are associated with arachidonic acid metabolism, glycerophospholipid catabolism, tryptophan metabolism, phenylalanine metabolism, vitamin B6 metabolism, etc. > Conclusion: These results indicated that RA-related biomarkers reflected the metabolic profile of AIA rats. Meanwhile, SMP could effectively treat RA mainly by reducing inflammation and regulating abnormal lipid metabolic pathways and amino acid metabolisms. It showed that metabolomics could be used to analyze the metabolic profiles involved in RA and reveal the mechanism of SMP treatment of RA.>.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Medicamentos Herbarios Chinos , Ratas , Animales , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Ácido Araquidónico/uso terapéutico , Metabolómica/métodos , Artritis Experimental/tratamiento farmacológico , Biomarcadores
7.
Artículo en Inglés | MEDLINE | ID: mdl-36652816

RESUMEN

Kidney yang deficiency syndrome (KYDS) is a classic syndrome of traditional Chinese medicine (TCM). The salt-processed product of Semen Cuscuta (YP) is the monarch drug in Bushen Antai Mixture (BAM), can improve the reproductive dysfunction caused by KYDS, and the effect is better than that of raw products of Semen Cuscuta (SP). However, its mechanism is not completely clear yet. In this study, an integrated strategy combining untargeted metabolomics with microbiology was used to explore the mechanism of YP in the BAM improving KYDS. 16S rDNA gene sequencing showed that BAM containing YP (Y-BAM) had a significantly better regulatory effect on Desulfobacterota and Desulfovibrionaceae_unclassified than BAM containing SP (S-BAM). Untargeted metabolomics studies showed that Y-BAM significantly regulated 4 metabolites and 4 metabolic pathways. In addition, multi-index analysis showed that the effect of Y-BAM on arachidonic acid metabolism, tyrosine metabolism, purine metabolism, fructose and mannose metabolism and total metabolism was closer to that of the control group compared to S-BAM. The analysis of serum biochemical indexes showed that Y-BAM had more significant regulating effect on the levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) and superoxide dismutase (SOD) in serum of KYDS rats compared to S-BAM. Spearman correlation analysis showed that there was a significant correlation between intestinal microorganisms and metabolites and serum biochemical indexes. For example, Desulfovibrionaceae_unclassified was positively correlated with arachidonic acid, and negatively correlated with SOD and LH. This study suggests that YP may enhance the regulation of intestinal flora and endogenous metabolism of KYDS, so that BAM shows a better therapeutic effect on KYDS, which also reasonably explains why BAM uses Semen Cuscuta stir-baked with salt solution.


Asunto(s)
Cuscuta , Deficiencia Yang , Ratas , Animales , Deficiencia Yang/tratamiento farmacológico , Proyectos de Investigación , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Semillas/metabolismo , Metabolómica/métodos , Riñón/metabolismo , Cloruro de Sodio/farmacología
8.
Hamostaseologie ; 43(3): 179-187, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36693407

RESUMEN

The tyrosine kinase inhibitors (TKIs) imatinib, dasatinib, bosutinib, and nilotinib are established for first-line treatment of chronic myeloid leukemia (CML) but may cause side effects such as bleeding and thrombotic complications. We investigated the impact of TKIs on platelet function ex vivo in anticoagulated whole blood (WB) samples from healthy adults by lumiaggregometry and PFA-100 test. Samples (n = 15 per TKI) were incubated for 30 minutes with TKI at therapeutically relevant final concentrations. Aggregation and ATP release were induced by collagen (1 µg/mL), arachidonic acid (0.5 mmol/L), and thrombin (0.5 U/mL). Imatinib, bosutinib, and nilotinib significantly increased collagen-induced aggregation compared with controls. In addition, for bosutinib and nilotinib, a significant increase in aggregation after induction with arachidonic acid was detected. ATP-release and PFA-100 closure times were not influenced significantly by these three TKI. In contrast, dasatinib demonstrated a concentration-dependent inhibition of collagen-induced aggregation and ATP release and a significant prolongation of the PFA-100 closure time with the collagen/epinephrine cartridge. Aggregation and ATP release by other agonists as well as closure time with the collagen/ADP cartridge were not influenced significantly. In conclusion, we clearly show a concentration-dependent inhibition of collagen-induced platelet function in WB by dasatinib confirming prior results obtained in platelet-rich plasma. Bosutinib and nilotinib exerted no impairment of platelet activation. On the contrary, both TKI showed signs of platelet activation. When comparing our results with existing data, imatinib in therapeutic relevant concentrations does not impair platelet function.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Adulto , Humanos , Dasatinib/uso terapéutico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Voluntarios Sanos , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/inducido químicamente , Adenosina Trifosfato/uso terapéutico
9.
Prostate ; 82(5): 617-629, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35089606

RESUMEN

BACKGROUND: Despite the clinical success of androgen receptor (AR)-targeted therapies, prostate cancer (PCa) inevitably progresses to castration-resistant prostate cancer (CRPC). Transcription factor 6 α (ATF6α), an effector of the unfolded protein response (UPR) that modulates the cellular response to endoplasmic reticulum (ER) stress, has been linked to tumor development, metastasis, and relapse. However, the role of ATF6α in CRPC remains unclear. METHODS: The effect of ATF6α on the CRPC-like phenotype in PCa cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carb-Oxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS), 5-Bromo-2-deoxyUridine (BrdU) incorporation analysis, and cell death assay. Mechanistically, bioinformatic analysis was utilized to evaluate the potential of PLA2G4A as the target of ATF6α. Moreover, Western blot analysis, real-time polymerase chain reaction, chromatin immunoprecipitation, arachidonic acid (AA), and prostaglandin E2 (PGE2) assays were performed to identify the regulatory effect of ATF6α on PLA2G4A. RESULTS: In this study, we found that the increase of ATF6α expression in response to androgen deprivation generates PCa cells with a CRPC-like phenotype. PCa cells with high levels of ATF6α expression are resistant to ferroptosis, and genetic and pharmacological inhibition of ATF6α could, therefore, promote the ferroptotic death of tumor cells and delay PCa progression. Molecular analyses linked ATF6α regulation of ferroptosis to the PLA2G4A-mediated release of AA and the resulting increase in PGE2 production, the latter of which acts as an antiferroptotic factor. CONCLUSIONS: This study defines ATF6α as a novel antiferroptotic regulator that exacerbates PCa progression. In addition, our data establish ATF6α-PLA2G4A signaling as an important pathological pathway in PCa, and targeting this pathway may be a novel treatment strategy.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Ferroptosis , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/uso terapéutico , Ácido Araquidónico/uso terapéutico , Línea Celular Tumoral , Dinoprostona , Fosfolipasas A2 Grupo IV , Humanos , Masculino , Recurrencia Local de Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/metabolismo
10.
Anat Rec (Hoboken) ; 305(7): 1672-1681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34708578

RESUMEN

Effective therapeutics are not available for acute lung injury (ALI) and acute respiratory distress syndrome. Modified Xiaoqinglong decoction (M-XQL) is reported to effectively treat pneumonia, but the underlying mechanisms are unclear. In this study, the therapeutic effect and mechanism of M-XQL were examined using a lipopolysaccharide (LPS)-induced ALI mouse model. The effects of M-XQL on lung injury, inflammatory responses, and cell apoptosis were analyzed. Additionally, high-throughput sequencing was performed to evaluate the therapeutic mechanism of M-XQL. Pretreatment with M-XQL significantly and dose-dependently mitigated the pathological changes and upregulation of pulmonary, nitric oxide content and cell apoptosis and serum tumor necrosis factor-alpha contents in the LPS-induced ALI mouse model. RNA sequencing analysis revealed that the expression of several arachidonic acid metabolism-associated genes in the LPS + high-dose M-XQL group differed from that in the LPS group. In particular, the Cbr2, Cyp4f18, and Cyp2e1 levels were upregulated, whereas the Alox12, Ptges, and Ptges2 levels were downregulated in the LPS + high-dose M-XQL group. These results suggest that M-XQL exerts therapeutic effects in ALI mice by regulating arachidonic acid metabolism and exerting anti-apoptotic and anti-inflammatory effects. Thus, M-XQL is a potential agent for the clinical treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Ratones
11.
J Exp Clin Cancer Res ; 40(1): 344, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727953

RESUMEN

Background High resistance to therapy and poor prognosis characterizes malignant pleural mesothelioma (MPM). In fact, the current lines of treatment, based on platinum and pemetrexed, have limited impact on the survival of MPM patients. Adaptive response to therapy-induced stress involves complex rearrangements of the MPM secretome, mediated by the acquisition of a senescence-associated-secretory-phenotype (SASP). This fuels the emergence of chemoresistant cell subpopulations, with specific gene expression traits and protumorigenic features. The SASP-driven rearrangement of MPM secretome takes days to weeks to occur. Thus, we have searched for early mediators of such adaptive process and focused on metabolites differentially released in mesothelioma vs mesothelial cell culture media, after treatment with pemetrexed. METHODS: Mass spectrometry-based (LC/MS and GC/MS) identification of extracellular metabolites and unbiased statistical analysis were performed on the spent media of mesothelial and mesothelioma cell lines, at steady state and after a pulse with pharmacologically relevant doses of the drug. ELISA based evaluation of arachidonic acid (AA) levels and enzyme inhibition assays were used to explore the role of cPLA2 in AA release and that of LOX/COX-mediated processing of AA. QRT-PCR, flow cytometry analysis of ALDH expressing cells and 3D spheroid growth assays were employed to assess the role of AA at mediating chemoresistance features of MPM. ELISA based detection of p65 and IkBalpha were used to interrogate the NFkB pathway activation in AA-treated cells. RESULTS: We first validated what is known or expected from the mechanism of action of the antifolate. Further, we found increased levels of PUFAs and, more specifically, arachidonic acid (AA), in the transformed cell lines treated with pemetrexed. We showed that pharmacologically relevant doses of AA tightly recapitulated the rearrangement of cell subpopulations and the gene expression changes happening in pemetrexed -treated cultures and related to chemoresistance. Further, we showed that release of AA following pemetrexed treatment was due to cPLA2 and that AA signaling impinged on NFkB activation and largely affected anchorage-independent, 3D growth and the resistance of the MPM 3D cultures to the drug. CONCLUSIONS: AA is an early mediator of the adaptive response to pem in chemoresistant MPM and, possibly, other malignancies.


Asunto(s)
Antineoplásicos/efectos adversos , Ácido Araquidónico/uso terapéutico , Espectrometría de Masas/métodos , Mesotelioma Maligno/tratamiento farmacológico , Estrés Fisiológico/efectos de los fármacos , Ácido Araquidónico/farmacología , Femenino , Humanos , Masculino
12.
JAMA Netw Open ; 4(10): e2128771, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648010

RESUMEN

Importance: Supplementing preterm infants with long-chain polyunsaturated fatty acids (LC-PUFA) has been inconsistent in reducing the severity and incidence of retinopathy of prematurity (ROP). Furthermore, few studies have measured the long-term serum lipid levels after supplementation. Objective: To assess whether ROP severity is associated with serum levels of LC-PUFA, especially docosahexaenoic acid (DHA) and arachidonic acid (AA), during the first 28 postnatal days. Design, Setting, and Participants: This cohort study analyzed the Mega Donna Mega study, a randomized clinical trial that provided enteral fatty acid supplementation at 3 neonatal intensive care units in Sweden. Infants included in this cohort study were born at a gestational age of less than 28 weeks between December 20, 2016, and August 6, 2019. Main Outcomes and Measures: Severity of ROP was classified as no ROP, mild or moderate ROP (stage 1-2), or severe ROP (stage 3 and type 1). Serum phospholipid fatty acids were measured through gas chromatography-mass spectrometry. Ordinal logistic regression, with a description of unadjusted odds ratio (OR) as well as gestational age- and birth weight-adjusted ORs and 95% CIs, was used. Areas under the curve were used to calculate mean daily levels of fatty acids during postnatal days 1 to 28. Blood samples were obtained at the postnatal ages of 1, 3, 7, 14, and 28 days. Results: A total of 175 infants were included in analysis. Of these infants, 99 were boys (56.6%); the median (IQR) gestational age was 25 weeks 5 days (24 weeks 3 days to 26 weeks 6 days), and the median (IQR) birth weight was 785 (650-945) grams. A higher DHA proportion was seen in infants with no ROP compared with those with mild or moderate ROP or severe ROP (OR per 0.5-molar percentage increase, 0.49 [95% CI, 0.36-0.68]; gestational age- and birth weight-adjusted OR, 0.66 [95% CI, 0.46-0.93]). The corresponding adjusted OR for AA levels per 1-molar percentage increase was 0.83 (95% CI, 0.66-1.05). The association between DHA levels and ROP severity appeared only in infants with sufficient AA levels, suggesting that a mean daily minimum level of 7.8 to 8.3 molar percentage of AA was necessary for a detectable association between DHA level and less severe ROP. Conclusions and Relevance: This cohort study found that higher mean daily serum levels of DHA during the first 28 postnatal days were associated with less severe ROP even after adjustment for known risk factors, but only in infants with sufficiently high AA levels. Further studies are needed to identify LC-PUFA supplementation strategies that may prevent ROP and other morbidities.


Asunto(s)
Ácido Araquidónico/efectos adversos , Ácidos Docosahexaenoicos/efectos adversos , Retinopatía de la Prematuridad/etiología , Ácido Araquidónico/uso terapéutico , Estudios de Cohortes , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/metabolismo , Recien Nacido Prematuro/fisiología , Modelos Logísticos , Masculino , Oportunidad Relativa , Retinopatía de la Prematuridad/epidemiología , Suecia
13.
JAMA Pediatr ; 175(4): 359-367, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523106

RESUMEN

Importance: Lack of arachidonic acid (AA) and docosahexaenoic acid (DHA) after extremely preterm birth may contribute to preterm morbidity, including retinopathy of prematurity (ROP). Objective: To determine whether enteral supplementation with fatty acids from birth to 40 weeks' postmenstrual age reduces ROP in extremely preterm infants. Design, Setting, and Participants: The Mega Donna Mega trial, a randomized clinical trial, was a multicenter study performed at 3 university hospitals in Sweden from December 15, 2016, to December 15, 2019. The screening pediatric ophthalmologists were masked to patient groupings. A total of 209 infants born at less than 28 weeks' gestation were tested for eligibility, and 206 infants were included. Efficacy analyses were performed on as-randomized groups on the intention-to-treat population and on the per-protocol population using as-treated groups. Statistical analyses were performed from February to April 2020. Interventions: Infants received either supplementation with an enteral oil providing AA (100 mg/kg/d) and DHA (50 mg/kg/d) (AA:DHA group) or no supplementation within 3 days after birth until 40 weeks' postmenstrual age. Main Outcomes and Measures: The primary outcome was severe ROP (stage 3 and/or type 1). The secondary outcomes were AA and DHA serum levels and rates of other complications of preterm birth. Results: A total of 101 infants (58 boys [57.4%]; mean [SD] gestational age, 25.5 [1.5] weeks) were included in the AA:DHA group, and 105 infants (59 boys [56.2%]; mean [SD] gestational age, 25.5 [1.4] weeks) were included in the control group. Treatment with AA and DHA reduced severe ROP compared with the standard of care (16 of 101 [15.8%] in the AA:DHA group vs 35 of 105 [33.3%] in the control group; adjusted relative risk, 0.50 [95% CI, 0.28-0.91]; P = .02). The AA:DHA group had significantly higher fractions of AA and DHA in serum phospholipids compared with controls (overall mean difference in AA:DHA group, 0.82 mol% [95% CI, 0.46-1.18 mol%]; P < .001; overall mean difference in control group, 0.13 mol% [95% CI, 0.01-0.24 mol%]; P = .03). There were no significant differences between the AA:DHA group and the control group in the rates of bronchopulmonary dysplasia (48 of 101 [47.5%] vs 48 of 105 [45.7%]) and of any grade of intraventricular hemorrhage (43 of 101 [42.6%] vs 42 of 105 [40.0%]). In the AA:DHA group and control group, respectively, sepsis occurred in 42 of 101 infants (41.6%) and 53 of 105 infants (50.5%), serious adverse events occurred in 26 of 101 infants (25.7%) and 26 of 105 infants (24.8%), and 16 of 101 infants (15.8%) and 13 of 106 infants (12.3%) died. Conclusions and Relevance: This study found that, compared with standard of care, enteral AA:DHA supplementation lowered the risk of severe ROP by 50% and showed overall higher serum levels of both AA and DHA. Enteral lipid supplementation with AA:DHA is a novel preventive strategy to decrease severe ROP in extremely preterm infants. Trial Registration: ClinicalTrials.gov Identifier: NCT03201588.


Asunto(s)
Ácido Araquidónico/uso terapéutico , Grasas de la Dieta/uso terapéutico , Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Nutrición Enteral/métodos , Retinopatía de la Prematuridad/prevención & control , Método Doble Ciego , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Análisis de Intención de Tratar , Estimación de Kaplan-Meier , Masculino , Gravedad del Paciente , Distribución de Poisson , Retinopatía de la Prematuridad/diagnóstico , Resultado del Tratamiento
14.
Cell Death Dis ; 12(1): 73, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436541

RESUMEN

Pyroptosis is a novel type of programmed cell death associated with the pathogenesis of many inflammatory diseases. Docosahexaenoic acid (DHA) and Arachidonic acid (AA) is widely involved in inflammatory pathological processes. However, the effect and mechanism of DHA and AA on pyroptosis in Kupffer cells are poorly understood. The present study demonstrated that DHA and AA ameliorated lipopolysaccharide (LPS)-induced Kupffer cells pyroptosis by reversing the increased expression of NLRP3 inflammasome complex, GSDMD, IL-1ß, IL-18, and PI-stained positive rate. Next, the study revealed that GPR120 silencing eliminated the anti-pyroptosis of DHA and AA in LPS-induced Kupffer cells, suggesting that DHA and AA exerted their effect through GPR120 signaling. Importantly, GPR120 endocytose and binds to NLRP3 under LPS stimulation. Furthermore, co-immunoprecipitation showed that DHA and AA promoted the interaction between GPR120 and NLRP3 in LPS-exposed Kupffer cells, thus inhibiting the self-assembly of NLRP3 inflammasome complex. Finally, the study verified that DHA and AA alleviated hepatic injury through inhibiting Kupffer cells pyroptosis in vivo. The findings indicated that DHA and AA alleviated LPS-induced Kupffer cells pyroptosis via GPR120 interaction with NLRP3, it might become a potential therapeutic approach hepatic injury.


Asunto(s)
Ácido Araquidónico/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Inflamasomas/metabolismo , Macrófagos del Hígado/metabolismo , Lipopolisacáridos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ácido Araquidónico/farmacología , Muerte Celular , Ácidos Docosahexaenoicos/farmacología , Humanos , Masculino , Ratones
15.
Clin Hemorheol Microcirc ; 77(3): 259-265, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33337352

RESUMEN

This study aimed to investigate the effects of arachidonic acid metabolite epoxyeicosatrienoic acid (EETs) in the apoptosis of endothelial cells induced by tumor necrosis factor-alpha (TNF-α). After human umbilical vein endothelial cells were cultured, TNF-α/ActD, 14, 15-EET, and HMR-1098 were added, respectively, into the culture medium. The apoptosis level of endothelial cells was detected by flow cytometry. After TNF-α/ActD induced endothelial cell apoptosis, flow cytometry staining showed that endothelial cell apoptosis increased significantly, and the apoptotic cells were significantly reduced after the addition of 14, 15-EET. However, the apoptotic cells significantly increased after the addition of HMR-1098. Western Blot results showed that the phosphorylation levels of LC3-II and AMPK were increased after TNF-α/ActD induction, and the increase was noticeable after the addition of 14, 15-EET. However, the phosphorylation levels of LC3-II and AMPK significantly decreased after the addition of HMR-1098. The activity of Caspase-8 and -9 decreased significantly after the addition of 14, 15-EET but increased after the addition of HMR-1098. Arachidonic acid can inhibit TNF-α induced endothelial cell apoptosis by upregulating autophagy.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Araquidónico/uso terapéutico , Células Endoteliales/metabolismo , Factor de Necrosis Tumoral alfa/efectos adversos , Ácido Araquidónico/farmacología , Línea Celular Tumoral , Humanos
16.
Front Immunol ; 11: 609994, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281832

RESUMEN

Blood flukes of the genus Schistosoma are covered by a protective heptalaminated, double lipid bilayer surface membrane. Large amounts of sphingomyelin (SM) in the outer leaflet form with surrounding water molecules a tight hydrogen bond barrier, which allows entry of nutrients and prevents access of host immune effectors. Excessive hydrolysis of SM to phosphoryl choline and ceramide via activation of the parasite tegument-associated neutral sphingomyelinase (nSMase) with the polyunsaturated fatty acid, arachidonic acid (ARA) leads to parasite death, via allowing exposure of apical membrane antigens to antibody-dependent cell-mediated cytotoxicity (ADCC), and accumulation of the pro-apoptotic ceramide. Surface membrane nSMase represents, thus, a worm Achilles heel, and ARA a valid schistosomicide. Several experiments conducted in vitro using larval, juvenile, and adult Schistosoma mansoni and Schistosoma haematobium documented ARA schistosomicidal potential. Arachidonic acid schistosomicidal action was shown to be safe and efficacious in mice and hamsters infected with S. mansoni and S. haematobium, respectively, and in children with light S. mansoni infection. A combination of praziquantel and ARA led to outstanding cure rates in children with heavy S. mansoni infection. Additionally, ample evidence was obtained for the powerful ARA ovocidal potential in vivo and in vitro against S. mansoni and S. haematobium liver and intestine eggs. Studies documented ARA as an endogenous schistosomicide in the final mammalian and intermediate snail hosts, and in mice and hamsters, immunized with the cysteine peptidase-based vaccine. These findings together support our advocating the nutrient ARA as the safe and efficacious schistosomicide of the future.


Asunto(s)
Antígenos Helmínticos/administración & dosificación , Ácido Araquidónico/uso terapéutico , Proteasas de Cisteína/administración & dosificación , Schistosoma/efectos de los fármacos , Esquistosomiasis/tratamiento farmacológico , Esquistosomicidas/uso terapéutico , Vacunas/administración & dosificación , Animales , Antígenos Helmínticos/inmunología , Ácido Araquidónico/efectos adversos , Ácido Araquidónico/metabolismo , Proteasas de Cisteína/inmunología , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos , Humanos , Recuento de Huevos de Parásitos , Schistosoma/inmunología , Schistosoma/patogenicidad , Esquistosomiasis/inmunología , Esquistosomiasis/metabolismo , Esquistosomiasis/parasitología , Esquistosomicidas/efectos adversos , Resultado del Tratamiento , Vacunación , Vacunas/inmunología
17.
Medicina (Kaunas) ; 56(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825011

RESUMEN

It is proposed that the bioactive lipid, arachidonic acid (AA, 20:4 n-6), can inactivate severe acute respiratory syndrome(SARS-CoV-2), facilitate M1 and M2 macrophage generation, suppress inflammation, prevent vascular endothelial cell damage, and regulate inflammation resolution processes based on the timely formation of prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) based on the context. Thus, AA may be useful both to prevent and manage coronavrus disease-2019(COVID-19).


Asunto(s)
Ácido Araquidónico/uso terapéutico , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Ácidos Docosahexaenoicos/uso terapéutico , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Inflamación , Macrófagos/inmunología , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , SARS-CoV-2 , Inactivación de Virus , Tratamiento Farmacológico de COVID-19
18.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165683, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953218

RESUMEN

Arachidonic acid (AA) plays a fundamental role in the function of all cells. Metabolites of AA contribute to inflammation as well as for resolving inflammation. Although AA-derived metabolites exhibit well-substantiated bioactivity, it is not known whether AA regulates inflammatory responses independent of its metabolites. With the recent discovery that saturated fatty acids activate toll-like receptor-4 (TLR4), we tested the hypothesis that AA directly regulates inflammatory responses through modulating the activity of TLR4. In cultured cardiomyocytes and macrophages, we found that AA prevents saturated fatty acid-induced TLR4 complex formation with accessory proteins and the induction of proinflammatory cytokines. We discovered that AA directly binds to TLR4 co-receptor, myeloid differentiation factor 2 (MD2) and prevents saturated fatty acids from activating TLR4 pro-inflammatory signaling pathway. Similarly, AA reduced lipopolysaccharide (LPS)-induced inflammation in macrophages and septic death in mice through binding to MD2. In high-fat diet mouse model of obesity and LPS-induced model of acute lung injury, both mediating inflammatory responses through TLR4, treatment with AA prevented MD2/TLR4 dimerization, induction of inflammatory factors, and tissue injuries. In summary, we have discovered that AA interacts with MD2 and disrupts TLR4 activation by LPS and saturated fatty acids. These findings provide experimental evidence for a direct mechanism of AA-induced regulation of inflammation.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Ácido Araquidónico/farmacología , Miocarditis/tratamiento farmacológico , Obesidad/complicaciones , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar Aguda/inmunología , Animales , Ácido Araquidónico/uso terapéutico , Línea Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Humanos , Lipopolisacáridos/inmunología , Pulmón/inmunología , Pulmón/patología , Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Antígeno 96 de los Linfocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Miocarditis/inmunología , Miocarditis/patología , Miocardio/inmunología , Miocardio/patología , Miocitos Cardíacos , Obesidad/inmunología , Obesidad/metabolismo , Ácido Palmítico/toxicidad , Cultivo Primario de Células , Ratas , Sepsis/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo
19.
Biomed Pharmacother ; 120: 109549, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31655313

RESUMEN

BACKGROUND: Depression is a disease that seriously threatens the quality of human life. To explore the effect of gentiopicroside on depression, this study investigated the therapeutic effect of gentiopicroside on corticosterone-induced depressionin vivo and in vitro by using metabolomic methods. METHODS: A total of 36 rats were randomly assigned to three groups: a normal group, model group (depression), and treatment group (depression + gentiopicroside). Corticosterone was administrated to induce depression-like model rats. Morris water maze test was used to validated the behavior performance. The hippocampus of rats was obtained for metabolomic detection. Metabolites that were differentially expressed between the groups were extracted for Heatmap, Go, and pathway enrichment analyses. Finally, neuronal cells were cultured and examined to validated the effect of gentiopicroside. RESULTS: Corticosterone injured rats learning capacity, and decreased the levels of 5-HT, and reversed by gentiopicroside delivery. Metabolites obtained from the hippocampus of rats in the three groups were subjected to a principal component analysis (PCA). Go and pathway enrichment analyses revealed the involvement of sphingolipid metabolism et al. Gentiopicroside could inhibit apoptosis caused by corticosterone, and also decrease neuronal cell proliferation and BDNF levels in vitro. Arachidonic acid (ARA) reversed the protective effect of gentiopicroside on neuronal cells. CONCLUSION: These findings suggest that gentiopicroside reduces apoptosis and increases the proliferation of hippocampus cells in depressed animals by regulating metabolites. Moreover, our study provides a new basis for the clinical treatment of depression and demonstrates the potential efficacy of gentiopicroside in this area of pathology.


Asunto(s)
Depresión/tratamiento farmacológico , Depresión/metabolismo , Glucósidos Iridoides/uso terapéutico , Metabolómica , Animales , Apoptosis/efectos de los fármacos , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Línea Celular Tumoral , Corticosterona , Depresión/inducido químicamente , Modelos Animales de Enfermedad , Hipocampo/patología , Glucósidos Iridoides/farmacología , Metaboloma , Estrés Oxidativo/efectos de los fármacos , Control de Calidad , Ratas Sprague-Dawley
20.
J Clin Sleep Med ; 15(9): 1197-1208, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31538590

RESUMEN

STUDY OBJECTIVES: This secondary analysis characterized sleep patterns for toddlers born preterm and tested effects of docosahexaenoic acid (DHA)+ arachidonic acid (AA) supplementation on children's caregiver-reported sleep. Exploratory analyses tested whether child sex, birth weight, and caregiver depressive symptomatology were moderators of the treatment effect. METHODS: Omega Tots was a single-site 180-day randomized (1:1), double-blinded, placebo-controlled trial. Children (n = 377) were age 10 to 16 months at enrollment, born at less than 35 weeks' gestation, assigned to 180 days of daily 200 mg DHA + 200 mg AA supplementation or placebo (400 mg corn oil), and followed after the trial ended to age 26 to 32 months. Caregivers completed a sociodemographic profile and questionnaires about their depressive symptomatology (Center for Epidemiologic Studies Depression Scale) and the child's sleep (Brief Infant Sleep Questionnaire). Analyses compared changes in sleep between the DHA+AA and placebo groups, controlling for baseline scores. Exploratory post hoc subgroup analyses were conducted. RESULTS: Eighty-one percent (ntx = 156; nplacebo = 150) of children had 180-day trial outcome data; 68% (ntx = 134; nplacebo = 122) had postintervention outcome data. Differences in change between the DHA+AA and placebo groups after 180 days of supplementation were not statistically significant for the entire cohort. Male children (difference in nocturnal sleep change = 0.44, effect size = 0.26, P = .04; sleep problems odds ratio = 0.36, 95% confidence interval = 0.15, 0.82) and children of depressed caregivers (difference in nocturnal sleep change = 1.07, effect size = 0.65, P = .006; difference in total sleep change = 1.10, effect size = 0.50, P = .04) assigned to the treatment group showed improvements in sleep, compared to placebo. CONCLUSIONS: Although there is no evidence of an overall effect of DHA+AA supplementation on child sleep, exploratory post hoc analyses identified important subgroups of children born preterm who may benefit. Future research including larger samples is warranted. CLINICAL TRIAL REGISTRATION: Registry: ClinicalTrials.gov; Identifier: NCT01576783. CITATION: Boone KM, Rausch J, Pelak G, Li R, Turner AN, Klebanoff MA, Keim SA. Docosahexaenoic acid and arachidonic acid supplementation and sleep in toddlers born preterm: secondary analysis of a randomized clinical trial. J Clin Sleep Med. 2019;15(9):1197-1208.


Asunto(s)
Ácido Araquidónico/uso terapéutico , Peso al Nacer , Cuidadores/psicología , Depresión/psicología , Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Método Doble Ciego , Femenino , Humanos , Lactante , Recien Nacido Prematuro , Masculino , Factores Sexuales , Sueño/efectos de los fármacos , Trastornos del Sueño-Vigilia/psicología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA